Switch

Understanding GE Microbes & U.S. Regulations – Case Study

Nuts & Bolts of U.S. Regulatory Dossiers for GE Products, SCRA

Nik Evitt, VP of Operations, Switch Bioworks

September 20, 2023

Disclaimer + Conflict of Interest

- This case study describes a hypothetical GE microbe product based on industry trends, not an actual product of Switch Bioworks.
- No assumptions about Switch Bioworks, its performance, or its research and development pipeline should be made on the basis of this presentation.
- No investment decisions should be made on the basis of this presentation.
- Nik is a stockholder of Switch Bioworks.

Acknowledgements

Switchforce

Eversole Associates

- Kellye Eversole
- Dusti Gallagher
- Isabelle Caugant
- Rolanda Young

US Government

Public Comments

Docket ID APHIS-2023-0030

Graphic Design

BioRender.com

Goal: Clarify how product features influence regulatory path

Detailed Objectives

- Review common use cases and product features among agricultural GE microbes
- Describe how industry trends could intersect to create a complex next-generation biofertilizer product
- * Explore how technical nuances affect regulatory requirements surrounding initial field release
- Determine where developers could benefit from additional guidance to accelerate grower access to safe, effective microbial products

Contents

- Introduction: Intended uses and features of GE microbes
- 2. Case: Consortium of GE microbes applied in-furrow as biofertilizer
 - a. Product review + regulatory questions
 - b. Regulatory steps to field trial readiness

Introduction: Intended uses and features of GE microbes

GE microbes have many use cases

Diverse microbes offer solutions to each use case

Each agency regulates specific product types

Agency	Statutes	Regulations	Regulated Products
USDA	 Plant Protection Act (PPA) 	 7 CFR 330 (no GE + unknown risk); 7 CFR 340 (GE); 7 CFR 360 (noxious weeds) 	 Actual and <u>potential</u> <u>plant</u> <u>pests</u> (includes certain GE modification); noxious weeds
⇔EPA	 Toxic Substance Control Act (TSCA) Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) 	 TSCA: 40 CFR 700, 720, 721, 723, 725 FIFRA: 40 CFR 158 (and others) 	 TSCA: catch-all for "new chemical substances" incl. intergeneric GE microbes FIFRA: pesticides incl. microbes (GE or no) & PIPs
FDA	 Federal Food, Drug, and Cosmetic Act (FD&C) 	 21 CFR 170.3(i) and 570.3(i); Details also in USC 	Food & food additives

Determine which federal agency(ies) may regulate the product

- Is it <u>food or a food additive</u> (nothing else matters)? If yes, check with FDA to see if it is regulated.
- Historically, FDA has not regulated fertilizer, soil amendments, or soil inoculants.

Case: Consortium of GE microbes applied in-furrow as biofertilizer – Product review + regulatory questions

Product Overview

Stage

1st field trial release after contained R&D

Intended Use

- Apply to soil surrounding crop plants
- Generate bioavailable nitrogen → plant growth
- Corn → lettuce + sweet potato (used as food)
- **NOT** to be marketed as pesticide/biocontrol

Formulation

- Spray dried powder
 - <u>5 separate microbes</u>
- Aqueous rehydration media
 - No known allergens

Mechanism of Action

- High consortium colonization (5% each 1%)
- "Basal-bolus" nitrogen release → plant growth

Organisms (all GE)

Species	Origin
Gluconacetobacter diazotrophicus	Rice field (CA, US)
<i>Pseudomonas stutzeri</i> (Strain #321-β)	Corn field (SW Kenya)
<i>Pseudomonas stutzeri</i> (Strain #42-γ)	Corn field A (Boone, IA, US)
Kosakonia radicincitans	Corn field A (Boone, IA, US)
Paenibacillus azotofixans	Corn field (IN, US)

Emerging Questions: Formulation

Permit count for a consortium product

- How many permit applications must be submitted to release the combined product?
- Which filing types must be submitted to which agencies?
- If one application per organism:
 - Can closely related organisms be grouped into a single application? When?
 - USDA draft guidance for microbes: "For release permits, only a single species may be submitted on a given permit application."

Potential rehydration media additive with broad-spectrum antibacterial activity

- Technical specifications
 - Confinement \rightarrow active concentrations only within 36 inches of crop plants
 - Persistence → half-life of 2 days (biological activity gone @ 20% of initial concentration)
 - Safety -> Tolerance in arthropods + plants | Clinical safety in humans, mammals, birds, fish
 - Usefulness → Widespread clinical resistance (human + vet), largely replaced
- What factors would regulators consider to determine if additive is allowable?

Organism Profile: G. diazotrophicus (Gd) Strain #12345- α

Organism Details

Habitat: Endophyte

- Inhabits roots, stems, leaves
- Unlikely pathogenicity (mostly promotes growth)

Origin: Rice field in CA

- Yields in 90th %ile for CA
- Microbiome sequencing → normal relative abundances

GE Modification Details

- CDS for plant virus protease
- Not independently infectious or mobile
- Tech: Cut & Paste

Data + Literature

- Pro: Robust maize growth promotion, 10x the quantity of con data, lab + greenhouse
- Con: Sick *Arabidopsis*, different *Gd* strain, 5 papers, same academic lab

What degree of plant pest risk would be assigned to this strain? Effects on regulation?

Since *Gd* is in roots + leaves ... it will be in potatoes + lettuce.

Does this subject the biofertilizer to FDA regulation? The consortium or just the Gd strain? When?

Organism Profiles: *P. stutzeri* Strains #321- β and #42- γ

321-β Organism Details

Habitat: Rhizosphere

Origin: Corn field in SW Kenya

- Yields in 90th %ile for Kenya
- Robust plant health over season
- Microbiome sequencing → expected relative abundances

321- β **GE** Modification Details

- Temp-sensitive promoter
- EXACT same sequence as in 42- γ and Kr

- Source material from either 42-γ and Kr (but lab records are unclear which)
- Tech: Cut & Paste

42-γ Organism Details

Habitat: Rhizosphere

Origin: Corn field "A" in IA

- Yields in 90th %ile for US
- Robust plant health over season
- Microbiome sequencing → expected relative abundances

42-γ **GE** Modification Details

 Truncation of native N assimilation regulatory protein

Tech: CRISPR-Cas <u>OR</u> Cut
 & Paste

Does method matter? TSCA or no?

Organism Profile: *K. radicincitans* Strain #777-ε

Organism Details

Habitat: Rhizosphere

Origin: Corn field "A" in IA

- Yields in 90th %ile for US
- Robust plant health over season
- Microbiome sequencing → expected relative abundances

GE Modification Details

- Locus-targeted duplication of parts within strain to yield completely novel circuit
- Tech: Cut & Paste

Who regulates this?

Emerging Questions: The Intergeneric Parts Conundrum

Emerging Questions: The Intergeneric Parts Conundrum

Organism Profile: *P. azotofixans* Strain #888-ζ

Organism Details

Habitat: Rhizosphere

Origin: Corn field in IN

- Yields in 90th %ile for US
- Robust plant health over season
- Microbiome sequencing → expected relative abundances

Note: Forms dormant endospores, but...

Germinating spores die in absence of other consortia species

GE Modification Details

 Heterologous lab suicide gene + promoter from other product strain

Tech: Cut & Paste

What pre-release data would satisfactorily abrogate concern for airborne transmission of viable spores?

Case: Consortium of GE microbes applied in-furrow as biofertilizer – Regulatory steps to field trial readiness

What steps must be taken to begin a field trial with full regulatory approval?

Consortium Product Mechanism of Action

Completed Data

- In vitro NH₃ release assay
 - Each strain releases NH₃ inducibly or constitutively as predicted
- Maize V4 colonization assays
 - 0.5% colonization of rhizosphere microbiome for each strain **individually**
 - 5% total colonization (1% each) when strains inoculated **as consortium**
 - Relative abundance of other strains not altered
- Plant growth promotion = consistent
- Maize isotope labeling studies
 - Significant chlorophyll N from product fixing
 - Correlated with plant growth promotion

What additional experiments must be run to secure regulatory approval for release?

© 2023 Switch Bioworks, Inc.

What quantitative targets (if any) must be met pre-release?

Slide 20

Critical aspects of field trial protocols

- Geographical Location: Corn field "A"
 - Within 10 miles of Boone, IA
 - Field where *P. stutzeri* 42-γ and *K. radicincitans* 777-ε were isolated

Field Characteristics

- 9 acres
- Corn-soy-corn crop rotation for 3 decades

Diagnostics

- qPCR and flow cytometry assays developed for absolute & relative abundance of product microbes
- What quantitative sensitivity and specificity would each agency like to see before field use?

Monitoring

- In-soil greenhouse data → all strains below LOD of qPCR and flow by harvest
- In-soil greenhouse data \rightarrow 0.1% of gram-negative cells survive simulated winter freeze-thaw
- Gram-positive spores survive free-thaw well and can be germinated (only in consortium)
- What testing frequency, duration, and spatial proximity of persistence/containment sampling sites must occur? What is the monitoring end condition for this product?

Termination

- Developer has asked to forego any grower-unfriendly devitalization protocols given cell death above
- Is this acceptable?

It's time to switch.